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ABSTRACT : This paper moves beyond the ―use AI or not‖ debate and treats AI–learner interaction as co-

regulation of working memory. Drawing on Cognitive Load Theory, retrieval practice, and metacognition, it 

outlines when AI helps learning and when it hurts. AI helps when it reduces needless external load, breaks 

complex tasks into steps, and channels effort toward building schemas. It hurts when verbose or misleading 

outputs overload working memory or replace retrieval. Two levers matter most: when help is given and how 

detailed it is. A practical routine is: learners first try on their own, then receive a short, local hint, and later face a 

delayed check. Design tips include using step-by-step, local explanations; ―skeleton-then-expand‖ for writing; 

fading support over time; and matching format to the discipline. The paper proposes a measurement agenda 

combining three-part cognitive load scales, process traces (hints, steps, time), and delayed recall/transfer tests. 

Limits and boundary conditions are noted (e.g., LLMs are not human working memory). Overall, AI should act 

as a scaffold, not a crutch: keep help brief and after the learner’s attempt, protect retrieval opportunities, and 

limit unnecessary verbosity. 

 

KEYWORDS: working memory; cognitive load theory; generative AI; scaffolding; retrieval practice; 

instructional design; cognitive offloading; educational technology 

 

I. INTRODUCTION 
Large language models (LLMs) and related AI tools increasingly function as dynamic external memory and 

strategy providers, yet empirical results oscillate between clear benefits and worrisome dependency. To 

reconcile these findings, Cognitive Load Theory is integrated with accounts of cognitive offloading and 

metacognitive control to propose an AI–Learner Working-Memory Co-Regulation Framework. The framework 

specifies how design routines and safeguards align assistance with the learner’s working-memory (WM) load 

profile, predicting when AI yields efficient encoding and transfer versus extraneous-load inflation and weak 

generalization. The contribution is threefold: (i) a unified theory linking assistance timing and output granularity 

to WM components and outcomes; (ii) a design agenda that operationalizes supportive versus strain pathways 

for STEM problem solving and academic writing; and (iii) a measurement plan pairing tri-component load 

instruments with trace-based analytics and delayed learning tests. Building on this synthesis, a measurement-

and-design agenda (load instruments, traces, delayed outcomes) is outlined to advance cumulative, mechanism-

oriented research without formal hypotheses. Neurocomputational work outlines a three-level architecture—

sensorimotor (local, nonconscious), a global but nonconscious cognitive level, and a GNW-based conscious 

level—that specifies minimal requirements for developing cognitive abilities (Volzhenin et al., 2022). The 

model underscores that adapting neural connections at local and global levels is required to solve progressively 

complex tasks. 

 

Building on cognitive load theory and load-reduction instruction, prior mechanisms that reduce extraneous load 

(e.g., pretraining, signaling, example-first sequencing) and subsequently fade guidance as expertise develops are 

acknowledged. Classical worked-example research has primarily optimized what and how much information is 

provided before independent problem solving (Barbieri et al., 2023). In contrast, the proposed framework treats 

the timing of assistance and the granularity of outputs as the primary design levers through which working 

memory is co-regulated. This shift moves beyond a general ―more-versus-less guidance‖ stance: assistance 

delivered too early and at high granularity can suppress retrieval opportunities and impair delayed transfer, even 

while lowering immediate effort; whereas later, minimal, local assistance can preserve retrieval while 

constraining extraneous load (Endres et al., 2024). Guidance is thus reconceptualized not merely as a quantity to 

be faded, but as a temporal–granular control problem with predictable, testable dissociations in effort, accuracy, 

and long-term learning.Recent meta-analytic reviews of AI-assisted instruction typically report small-to-

moderate average benefits accompanied by substantial heterogeneity (Li et al., 2025; Alanazi et al., 2025). A 

major source of this variance is proposed to be the under-specification of assistance timing and output 
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Granularity—an extension of the long-standing ―assistance dilemma‖—with recent syntheses also showing that 

instructional context (e.g., guided vs. unguided use) systematically moderates effects (Qu et al., 2025; 

Koedinger & Aleven, 2007). By explicitly modeling these two levers, it is predicted that AI support will help or 

hinder in systematic ways: early, high-granularity outputs are likely to inflate immediate performance yet 

depress later recall/transfer by crowding out retrieval; delayed, minimal, and locally targeted prompts should 

yield more durable learning (Roediger & Butler, 2011; Pastötter & Frings, 2019). Accordingly, the question is 

reframed from ―Does AI help?‖ to ―Under which timing-by-granularity configurations does AI help, for whom, 

and on which outcomes (immediate vs. delayed; near vs. far transfer)?‖ In this view, mixed effects are explained 

and design-testable moderators for future trials and meta-analytic coding are furnished (Wang & Fan, 2025; 

Alanazi et al., 2025).Artificial intelligence (AI) technologies—ranging from conversational agents (e.g., 

ChatGPT) to adaptive tutoring systems and memory-augmented architectures—are increasingly embedded in 

formal and informal learning. Beyond broad societal uptake, education has become a primary arena for AI’s 

promises of personalization, formative feedback, and workload reduction (Roy et al., 2024; Miao & Holmes, 

2023; OECD, 2023). Policy and synthesis reports highlight AI’s potential to strengthen feedback loops, intensify 

formative assessment, and tailor instruction when thoughtfully implemented (Cardona et al., 2023). Empirical 

syntheses similarly report positive mean effects of AI-supported tools on achievement and higher-order 

outcomes, including recent meta-analyses on ChatGPT-assisted learning and intelligent tutoring in K–12 (Wang 

& Fan, 2025; Dong et al., 2025; Létourneau et al., 2025). 

 

At the same time, the integration of AI foregrounds working-memory constraints and cognitive load. CLT-

aligned proposals and reviews argue that generative AI can optimize load—e.g., reducing extraneous processing 

or adaptively structuring materials—yet may also inject fragmented, task-irrelevant information that inflates 

load when poorly designed (Gkintoni et al., 2025; Martin et al., 2025; Twabu, 2025). This ambivalence mirrors 

findings on cognitive offloading—delegating mental operations to external tools—which can free resources for 

reasoning but also divert effort from internal encoding and retrieval (Risko & Gilbert, 2016). In education, such 

dynamics now extend from search/note-taking to LLM-based assistants that draft, summarize, and explain on 

demand.Evidence on overreliance costs is accumulating. In higher-education samples, overuse of ChatGPT has 

been associated with procrastination, memory loss, and dampened performance, consistent with concerns that 

reliance on AI may erode durable knowledge if it replaces rather than scaffolds retrieval-based learning (Abbas 

et al., 2024). Experimental work from the MIT Media Lab reports reduced neural engagement and poorer 

memory/ownership of produced text during LLM-assisted writing compared to search-assisted or unaided 

writing—implicating motivational and metacognitive mechanisms alongside WM (Kosmyna et al., 2025). These 

patterns echo the ―Google effect‖: easy access to information encourages remembering where to find facts rather 

than the facts themselves—i.e., a shift toward transactive memory that can trade off with internal storage unless 

instruction deliberately re-engages retrieval (Sparrow et al., 2011). 

 

Crucially, these dynamics are not uniform across ages and disciplines. Grade-level comparisons suggest 

developmental differences in offloading strategies: younger learners may underuse optimal externalization, 

whereas adolescents may over-rely on reminders—pointing to age-appropriate metacognitive instruction on 

when and how to offload (Sun et al., 2025). In higher-education and discipline-specific contexts, early studies of 

course-embedded AI chatbots indicate performance benefits while also documenting shifts in 

intrinsic/extraneous load that depend on task design and the granularity of prompts and explanations (Lademann 

et al., 2025). Taken together, these findings suggest that AI’s educational value hinges on co-regulating learners’ 

WM demands: leveraging AI to scaffold schema construction and reduce extraneous load while preserving 

desirable difficulties (e.g., retrieval practice) that consolidate long-term memory. Working-memory limits and 

typical AI functions are first situated within an educational frame (Section 2; see Fig. 1). Evidence on supportive 

mechanisms (Section 3) and strain mechanisms (Section 4) is then synthesized, and the resulting insights are 

distilled into design principles for educators and developers (Section 5). Finally, a future research agenda is 

outlined that details measurement and task-design guidance (Section 6), without advancing formal hypotheses. 

 

II. WORKING MEMORY AND ARTIFICIAL INTELLIGENCE IN EDUCATION: A 

CONCEPTUAL FRAME 
Working memory (WM) is the capacity-limited system that temporarily holds and manipulates information 

during learning and problem solving. In instructional contexts, WM burden comprises intrinsic demands from 

task complexity, extraneous demands from presentation/interface factors (e.g., fragmented displays), and 

germane effort invested in schema construction. Designs that minimize extraneous processing and stage intrinsic 

complexity yield more durable understanding and transfer, whereas multitasking and rapid context switching 

inflate load and impair recall and comprehension (Twabu, 2025; Grinschgl et al., 2021). Durable learning also 
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requires episodic encoding and retrieval practice; when intermediate steps are routinely externalized, learners 

encode fewer episodic details and engage in fewer retrieval events, weakening later recall/transfer (Sparrow et 

al., 2011; Oakley et al., 2025).Contemporary AI tools—including LLM-based assistants—can alleviate WM 

demands when they personalize content, scaffold steps, and provide concise exemplars or explanations; used 

well, these functions compress extraneous processing and free WM for sense-making (Cardona et al., 2023). 

Used poorly, they may short-circuit productive struggle and displace retrieval, producing mixed or negative 

learning effects (Risko & Gilbert, 2016; Abbas et al., 2024; Wang & Fan, 2025). Importantly, while LLMs 

maintain local context windows and surface tool-assisted ―memory,‖ they do not possess human WM or 

episodic systems; recent analyses highlight architectural/scaling limits not isomorphic to human WM 

constraints. Accordingly, educational use should treat AI as a context-sensitive external aid, not a cognitive 

surrogate (Gong & Zhang, 2024; Huang et al., 2025; Cardona et al., 2023). 

 

A schematic summary of these supportive versus strain pathways appears in Figure 1. 

Figure 1. Supportive versus strain mechanisms by which AI influences working memory (WM) in education 

Note. Left-hand boxes show supportive paths—structured offloading, adaptive prompting with concise feedback, 

WM-friendly materials (signaling, chunking), and fading guidance. Right-hand boxes summarize strain paths 

and metacognitive risks—over-offloading (AI as surrogate), fragmentation/hallucinations, verbose/poorly 

structured outputs. Arrows indicate how these inputs shape the WM load profile (intrinsic–extraneous–germane) 

and, in turn, downstream learning outcomes (recall, transfer, self-regulation). Abbreviations: AI = artificial 

intelligence; WM = working memory. 

 

Relative to load-reduction instruction and the worked-example tradition, the contribution is not merely the 

proposal of ―more example-first‖ or ―better prompts‖; rather, AI–learner interaction is formalized as working-

memory co-regulation along two orthogonal axes—assistance timing and output granularity. Through this 

formalization, concrete, falsifiable contrasts (early vs. late; global vs. minimal/local) are yielded and can be 

mapped to distinct causal pathways (support vs. strain) and boundary conditions (expertise level, task novelty, 

abstraction). Positioned in this way, classical guidance-fading insights are integrated with contemporary AI 

affordances, and meta-analytic heterogeneity is explained by specifying when identical content, delivered at 

different times and granularities, is likely to produce opposite patterns in immediate performance, cognitive-load 

profiles, and delayed transfer. 
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III. SUPPORTIVE MECHANISMS: HOW AI CAN REDUCE WORKING-MEMORY 

BURDEN 
AI can be deliberately orchestrated to lower extraneous load, stage intrinsic complexity, and increase germane 

processing. 

(a) Structured cognitive offloading. Breaking complex tasks into prompted sub-steps, providing just-in-time 

hints, and formatting outputs to reduce split-attention eases WM bottlenecks and supports novices when 

demands are high (Risko & Gilbert, 2016; Cardona et al., 2023). In writing and problem solving, AI can supply 

formats, checklists, and exemplars that cut display/search costs while keeping learners engaged in core 

reasoning (Kosmyna et al., 2025; Lademann et al., 2025).(b) Adaptive sequencing and concise feedback. 

Diagnosing misunderstandings, adjusting step size, and delivering brief, specific, action-oriented feedback 

aligns assistance with the learner’s momentary WM state (Cardona et al., 2023; Twabu, 2025).(c) WM-friendly 

materials and faded guidance. Summaries, signaling (headings, bullets), and chunked exemplars curb extraneous 

search, while worked examples with fading foster schema acquisition without flooding WM; teachers can use AI 

to generate isomorphic examples with controlled complexity and fade assistance across trials (Twabu, 2025). 

 

IV. STRAIN MECHANISMS: HOW AI CAN INCREASE WORKING-MEMORY BURDEN 
Persistent reliance on AI to recall facts or complete intermediate steps can displace retrieval, weakening later 

recall and transfer (Sparrow et al., 2011; Oakley et al., 2025). Mixed or negative learning effects arise when 

generative tools substitute for—rather than scaffold—core processing (Abbas et al., 2024; Wang & Fan, 2025). 

Long, verbose, or poorly structured outputs inflate extraneous load; hallucinated or partially relevant content 

imposes verification/reconciliation costs that further tax attention and WM (Twabu, 2025; Cardona et al., 2023). 

A metacognitive pathway compounds these burdens: when answers are instantly available, learners may 

overestimate understanding, under-invest in monitoring/encoding, and drift toward transactive memory 

strategies (Risko & Gilbert, 2016; Shanmugasundaram & Tamilarasu, 2023). The result can be short-term 

fluency but long-term fragility, especially when retrieval practice is bypassed or outputs are 

fragmented/unvetted. 

 

V. DESIGN PRINCIPLES AND TEACHING ROUTINES (AI × EDUCATION × 

WORKING MEMORY) 
Effective use of AI should co-regulate rather than outsource WM. 

 

(1) Load-aware prompting. Constrain scope to one idea or worked step; request headings/numbered steps/brief 

takeaways to reduce search costs; control novelty by introducing one new element at a time when content is 

unfamiliar (Twabu, 2025). 

 

(2) Retrieval-preserving workflows. Elicit an initial unaided attempt before any AI exemplar; follow help with 

short, delayed quizzes/generation to restabilize memory; fade guidance across practice (Oakley et al., 2025). 

 

(3) Level- and discipline-matching. For novices, favor worked examples, tight formatting, and shorter outputs; 

for advanced learners, reduce scaffolds and invite more open-ended generation. In STEM, prefer stepwise 

derivations and diagram-first prompts; in writing, use outline-then-expand routines (Cardona et al., 2023). 

 

(4) Explanations that serve WM. Keep explanations brief, local, and actionable (why this step? what to 

check next?), reserving deeper model-level accounts for cases where they improve decision quality or self-

regulation—avoiding verbosity that inflates extraneous load (Cardona et al., 2023).Building on the AI–Learner 

Working-Memory Co-Regulation Framework and the pathways summarized in Fig. 1, future work should 

prioritize mechanism-oriented studies that are comparable across settings without requiring formal hypotheses. 

The shared aim is to make design choices and measurement practices explicit so that findings on AI-supported 

learning can cumulate coherently around how assistance shapes the WM load profile (intrinsic–extraneous–

germane) and, in turn, recall, transfer, and self-regulation (Risko & Gilbert, 2016; Sparrow et al., 2011; Twabu, 

2025). 

 

A first priority is to systematically vary the design levers your review identifies as most consequential: the 

timing of assistance (pre-attempt vs. brief post-attempt help), the granularity of outputs (stepwise/diagram-first 

and outline-then-expand vs. final/verbose), retrieval safeguards (short unaided attempts before assistance and 

delayed retrieval after), explanation safeguards (local, actionable rationales tied to specific steps), the structure 

of offloading (signaling, chunking, checklists), and scope/novelty control (one idea or step per prompt, staged 

introduction of new elements). These levers should be exercised in discipline-sensitive tasks—stepwise 
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derivations and diagram-first prompts in STEM; outline-then-expand in writing—and across learner levels to 

surface boundary conditions such as expertise reversal and multitasking pressure (Cardona et al., 2023; Wang & 

Fan, 2025; Lademann et al., 2025; Abbas et al., 2024).To support cumulation, we recommend a minimal 

common battery that combines subjective and trace/product measures with delayed outcomes. Immediately after 

tasks, administer short tri-component cognitive load scales for intrinsic, extraneous, and germane load. Pair 

these with process traces (prompt/output token counts, step counts, revisions, time-on-step, backtracks) and 

product analytics (e.g., claim–evidence links in writing; step-validation in STEM). Use immediate and delayed 

recall (24–72 h) and differentiate near vs. far transfer; include simple manipulation checks (perceived stepwise-

ness, verbosity, novelty/scope, trust). This battery makes it possible to map each design decision to predicted 

load shifts and downstream learning, aligning with your framework’s support/strain pathways (Cardona et al., 

2023; Sparrow et al., 2011; Twabu, 2025). 

 

Study designs can remain researchable without formal propositions while still being confirmatory in spirit. In 

STEM, a lab/classroom hybrid can randomize learners to pre- vs. post-attempt help crossed with stepwise vs. 

final outputs, use isomorphic items for near transfer, and include a delayed recall check; in writing, course-

embedded studies can contrast outline-then-expand with final-essay assistance, optionally adding brief local 

explanations and a short unaided outline before any AI exposure. In both cases, report representative prompt–

output pairs, model/version details, and any guardrails used to preserve retrieval or control verbosity (Kosmyna 

et al., 2025; Lademann et al., 2025).Because effects will vary by learner and context, analyses should model 

mechanisms and moderators. Report scale reliabilities and manipulation checks; use mediation to test whether 

extraneous↓ and germane↑ plausibly carry design effects to outcomes; probe moderation by prior knowledge, 

task complexity, grade level, and time pressure (expertise-reversal, multitasking). Mixed-effects models can 

account for repeated tasks and classroom clustering. When feasible, preregister core contrasts and share 

anonymized traces, rubrics, and code to improve reproducibility and synthesis (Risko & Gilbert, 2016).Finally, 

the design guidance emerging from your synthesis can be distilled for practice and then evaluated empirically: 

gate help by timing (solicit a brief unaided attempt, then provide concise, targeted assistance and re-engage 

memory with a short delayed check); keep outputs short and structured (stepwise, diagram-first, outline-then-

expand, one new element at a time); scaffold, then fade support as competence grows; and explain locally with 

actionable rationales rather than long narratives that inflate extraneous load. Framed this way, future work 

advances a programmatic agenda in which AI serves as a scaffold, not a surrogate, co-regulating WM demands 

to protect encoding and transfer while respecting developmental and disciplinary differences (Abbas et al., 

2024; Wang & Fan, 2025; Sparrow et al., 2011; Twabu, 2025). 

 

VI. DISCUSSION 
This paper reframes human–AI interaction as working-memory (WM) co-regulation rather than an ―AI vs. no-

AI‖ dichotomy. Grounded in Cognitive Load Theory (CLT), we synthesize a dual pattern: when AI is 

orchestrated as load-sensitive scaffolding, it reduces extraneous processing, stages intrinsic complexity, and 

channels effort toward germane processing; when it becomes a surrogate for core cognition, it risks over-

offloading and retrieval displacement, yielding short-term fluency but long-term fragility (Chandler & Sweller, 

1992; Sweller, 1994; Risko & Gilbert, 2016; Twabu, 2025; Abbas et al., 2024; Wang & Fan, 2025). Our 

framework treats AI as a designable scaffold tuned to the learner’s load profile, not a blanket substitute for core 

cognitive work. 

 

Mechanism 1: Cost-saving without displacement. When AI surfaces definitions, exemplars, and local cues at 

the moment of need, it trims search/friction and limits split attention, thereby lowering extraneous load—

provided that core generative moves remain with the learner (Risko & Gilbert, 2016; Lademann et al., 2025). 

Benefits peak when help is short, local, and step-bound, aligning with evidence that worked examples and 

example–problem sequences aid novices if tied to the focal step and then fade to promote independent problem 

solving (Barbieri et al., 2023; Renkl & Atkinson, 2016; van Gog et al., 2011). 

 

Mechanism 2: Protecting retrieval opportunities. Durable learning depends on retrieval. Giving answers too 

early blocks the retrieval that consolidates memory and supports transfer. Use a simple routine: pre-attempt → 

minimal, local hint → delayed check. Learners try first, get targeted help, then complete a later test. At a global 

level, dopamine seems necessary for credit assignment across the delay between perception and reward, which 

supports using delayed checks (Volzhenin et al., 2022). If AI replaces rather than brackets these retrieval 

moments, later recall and transfer decline (Oakley et al., 2025). Across lab and classroom studies, retrieval 

(including delayed or repeated testing) reliably outperforms restudy for long-term retention and can even 
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enhance subsequent learning—the forward-testing effect (Karpicke & Roediger, 2008; Roediger et al., 2011; 

Pastötter & Bäuml, 2014). 

 

Mechanism 3: Granularity and locality of AI output. Long, global explanations or highly creative, off-scope 

text tend to inflate extraneous load—especially for low-prior-knowledge learners—whereas stepwise, local 

explanations support schema construction (germane load) without overwhelming WM. CLT’s guidance-fading 

and expertise-reversal effects imply that the same prompt strategy can help novices yet hinder more 

knowledgeable learners unless assistance is progressively withdrawn and localized to genuine impasses (Sweller 

et al., 2011; Kalyuga et al., 2003). Long, verbose, or poorly structured responses also impose verification 

burdens when content is hallucinated or only partially relevant (Twabu, 2025; Cardona et al., 2023). 

Contextual moderators: K–12 vs. higher education. Moving from mechanisms to context, K–12 settings—

where metacognitive control and selective offloading are still developing—benefit most from worked examples, 

stepwise prompts, and brief, highly structured outputs, with dense scaffolding that fades across isomorphic items 

(Rosenshine, 2012; Koedinger & Corbett, 2006; Renkl et al., 2002; CESE, 2017; Barbieri et al., 2023). In higher 

education, where prior knowledge is greater and expertise-reversal can make heavy guidance counterproductive, 

AI should act as a local, minimalist aid: require a pre-AI attempt, request brief, local explanations, and fade 

quickly to promote self-explanation and transfer (Kalyuga et al., 2003; Wittwer & Renkl, 2008; Zawacki-Richter 

et al., 2019). Finally, ubiquitous multitasking and continuous partial attention act as chronic environmental 

pressures that erode WM and creative synthesis, complicating attempts to attribute gains or deficits solely to AI 

(Fırat, 2013). 

 

Offloading vs. ownership. Decades of work on cognitive offloading show that when external stores are reliable, 

people preferentially remember where to find information rather than the information itself (the ―Google 

effect‖). Offloading is rational only if retrieval opportunities are preserved and core generative steps remain with 

the learner; otherwise, near-term fluency can mask fragile, non-transferable knowledge (Sparrow et al., 2011). 

 

Automation bias as a boundary risk. Fluent AI suggestions can induce automation bias, leading users to 

overweight AI outputs and under-weight contradictory evidence. In education and clinical training, analyses 

argue that this bias short-circuits critical appraisal unless interfaces and routines explicitly re-instate verification 

and reflection—reinforcing our emphasis on structured pre-attempts and delayed checks rather than ―answer-

first‖ assistance (Nguyen, 2024; Romeo & Conti, 2025). 

 

Emerging evidence from AI-enhanced instruction. Recent experiments and reviews indicate that well-designed 

AI tutors and course-embedded chatbots can reduce intrinsic/extraneous load, raise self-efficacy and interest, 

and in some cases match or surpass strong baselines—while long-term performance and transfer remain uneven 

across tasks and designs. This pattern is consistent with our claim that assistance timing and scope determine 

whether AI functions as scaffold or crutch (Lademann et al., 2025; Kestin et al., 2025). 

 

Measurement implications. Rigorous tests of AI–WM co-regulation should combine multidimensional 

cognitive-load scales (intrinsic, extraneous, germane), Paas mental effort ratings, and trace-based analytics (e.g., 

hint usage, dwell time, backtracks) with delayed recall and transfer assessments. Validations of Leppink’s CLS 

in online/virtual environments support pairing subjective load with behavioral traces, which learning-analytics 

studies show can capture engagement tactics at scale (Andersen & Makransky, 2021; Choi & Lee, 2021; 

Ouwehand et al., 2021). 

 

Design agenda. The framework yields four testable contrasts for classroom experiments and product 

evaluations: (a) assistance timing (pre-attempt vs. post-attempt minimal hint), (b) granularity (stepwise/local vs. 

global/long-form output), (c) fading (fixed help vs. progressive silencing of cues), and (d) assessment placement 

(immediate verification vs. 24–72-hour delayed retrieval). Together with expertise-sensitive routing, these 

contrasts specify when AI should act as an adaptive scaffold that trims avoidable load while protecting the 

learner’s generative and retrieval work (Kalyuga et al., 2003). 

Overall, the discussion integrates classic CLT effects (split attention, worked examples, fading, expertise 

reversal) with findings on retrieval practice, cognitive offloading, and automation bias to explain why assistance 

timing and granularity are the pivot points of AI’s educational value. Designing routines around short, local help 

after a learner attempt and delayed retrieval offers a principled path to convert short-term fluency into durable 

learning and transfer. 
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VII. CONCLUSIONS AND IMPLICATIONS 
This review advances an AI–Learner Working-Memory (WM) co-regulation account that explains why 

educational AI alternately functions as a scaffold or a surrogate. The pivot points are assistance timing and 

output granularity: when help arrives after a learner attempt and remains short, local, and step-bound, AI reduces 

extraneous load, stages intrinsic complexity, and channels effort toward germane processing; when help 

precedes or replaces learner action—or arrives as global, verbose text—it displaces retrieval and inflates 

extraneous load, yielding near-term fluency but fragile, non-transferable knowledge. Treating AI as a designable 

scaffold tuned to the learner’s WM profile reconciles mixed findings across tasks, levels, and disciplines and 

provides a principled basis for instruction, tools, and evaluation. Our incremental contribution is to recast AI–

learner interaction as working-memory co-regulation by formalizing assistance timing and output granularity as 

design levers, and to pair this with a measurement agenda that combines tri-component cognitive-load 

instruments, process traces, and delayed transfer outcomes. 

 

For instructional practice, courses should gate assistance by timing, require a brief pre-attempt to surface 

knowledge gaps, then supply minimal, local hints and close the loop with a delayed check (approximately 24–72 

hours) to restabilize memory. Granularity should be constrained: stepwise or diagram-first explanations in 

STEM and outline-then-expand support in writing reduce search and split-attention costs while preserving the 

learner’s generative work. Scope and novelty should be tightly controlled so that each prompt introduces only 

one new element, with clear signaling (e.g., numbering, headings) to guide processing. Scaffolds ought to fade 

quickly across isomorphic items to anticipate expertise-reversal effects for more advanced learners. Retrieval 

opportunities must be protected through low-stakes quizzes or short generative recalls immediately after AI use 

and again after a delay, and assessment should value process evidence such as pre-attempts and intermediate 

steps. Because divided attention erodes WM, learning environments should also minimize multitasking 

affordances and keep explanations as short as possible and as detailed as necessary. Cognitive barriers are 

required by default for products and policies, including verbosity limitations, salience for hallucination risk, and 

modes that prioritize incremental, local assistance Interfaces should make "scaffold not surrogate" a top priority 

for educators by promoting evidence of a pre-attempt before granting fuller assistance, scheduling delayed 

checks natively, and fading supports as competence signals improve. Analytics should render mechanisms 

visible by logging hint usage, dwell time, backtracks, step counts, and output length to diagnose extraneous-load 

inflation and inform instructional decisions. Transparency about model versions, settings, prompt templates, and 

guardrails—aligned with accessibility and academic-integrity requirements—supports safe and effective 

classroom adoption while prioritizing cognitive safety. 

 

For research and evaluation, studies should explicitly manipulate and report the core design contrasts that the 

framework identifies: assistance timing (pre- versus post-attempt), granularity (stepwise/local versus 

global/long-form output), fading (fixed versus progressive removal of cues), and assessment placement 

(immediate versus delayed retrieval). A common battery will improve cumulation: pair tri-component load 

scales (intrinsic, extraneous, germane) and Paas mental-effort ratings with trace-based analytics such as hint 

usage, dwell time, and backtracks, and include delayed measures of recall and transfer at 24–72 hours. 

Mechanism-focused analyses should model mediation (extraneous decreases and germane increases) and 

moderation by prior knowledge, task complexity, grade level, and multitasking pressure, ideally using mixed-

effects approaches that respect classroom clustering. Sharing representative prompt–output pairs, guardrails, and 

anonymized traces—and preregistering core contrasts where feasible—will further enable cumulative, 

mechanism-oriented science. Several boundary conditions and limitations merit caution. Large language model 

context windows are not human WM; analogies should remain heuristic rather than literal. Heterogeneity in 

tasks, prompts, and outcome measures still constrains cross-study comparability, and evidence for long-term 

transfer remains sparser than for short-term performance. These constraints reinforce the need for retrieval-

preserving designs, careful control of verbosity and scope, and systematic inclusion of delayed outcomes in both 

research and practice. In sum, positioning AI as a scaffold rather than a surrogate offers a tractable route to 

convert short-term performance gains into durable learning and transfer. Time help after learner action, keep it 

short and local, fade it swiftly, and re-engage retrieval. Aligning instructional routines, product defaults, and 

evaluation methods around these principles organizes teaching, tooling, and evidence collection around a single 

mechanism: co-regulating WM so that assistance lightens avoidable load without displacing the cognitive work 

that makes knowledge last. 
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