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ABSTRACT: We considered the development of solution for initial value problems of third order ordinary
differential equations, with constructed orthogonal polynomial of weight function w(x) = x in the interval
[0,1]. It was used as our basis function in a collocation and interpolation technique. By investigating the basic
properties, from the findings it shows that the method is accurate and convergent. We considered three
examples, the results obtained when compared with existing method are favourable.
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. INTRODUCTION
Many problems in Science and Engineering yields Initial Value Problems (IVPs) of third order ordinary
differential equations (ODES) as shown below:

Y =fy,y,y")y@ =ay'(@=4y"(@ =y (1)

where  f is continuous in [a,b] arises in  many areas of physical problems.
Some of these problems have no analytical solution, thereby numerical schemes are developed to solve the
problems. The method of reducing (1) to a system of first order differential equations has been reported to
increase the dimension of the problem and therefore results in more computations (see Bun (1992)). Milne
(1953), proposed Block method for ODEs. Many researchers used different orthogonal polynomials as the basis
function to solve the problems numerically. Chebyshev orthogonal polynomial was used by Lancsos (1983) also
Tanner (1979) and Dahlguist (1979). Adeniyi, Alabi and Folaranmi (2008), Adeyefa, Akinola, Folaranmi and
Owolabi (2016), Joseph, Adeniyi and Adeyefa (2018), all of these researchers constructed orthogonal
polynomials in certain interval for different weight functions. In this work, an orthogonal polynomial
constructed for the interval [0,1] with respect to the weight function w(x) = x is adopted to solve third order
ODE:s for the Initial Value Problem (1).

II. THE ORTHOGONAL POLYNOMIAL CONSTRUCTION
For the equation below

b
| W sn @8 dx = b @
a
with
O,om+n
Omn = {1,m =1
w(x) is continuous and positive in the interval [a, b] such that the moments
b
U= f w(x)x"dx, n=10,12, ... (3)
a
exists.
The integral
b
(B bud = | Wb (r)dx @)

a
is the inner product of the polynomials ¢,,, and ¢,,. For orthogonality,

b
(Buur ) = j W) b () (D dx = 0, m 3 m, [~1,1]. (5)
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For orthogonal polynomials valid in [0,1] with respect to w(x) = x as the basis function ¢,,(x), n = 1,2,3, ... of
the approximant
n

() = ) () = y(). ©)
j=0
For this purpose, let ¢,,(x) be a polynomial of the nth order defined by
bu() = ) P ™)
j=0

The requirements for the construction are that

$n(1) =1 (8)
and

1
f w(x)pmd,(x)dx = 0; m # n.
Using the conditions abgve, the following orthogonal polynomial were generated
o) = 1
¢y (x) = 3x — 2
¢do(x) = 10x% —12x + 3
¢35 (x) = 35x3 — 60x2% + 30x — 4
¢a(x) = 126x* — 280x3 + 210x? — 60x + 5
¢s(x) = 462x° — 1260x* + 1260x3 — 560x% + 105x — 6
¢e(x) = 1716x°® — 5544x° + 6930x* — 4200x> + 1260x2 — 168x + 7
¢, (x) = 6435x7 — 24024x°® + 36036x°> + 27720x* + 11550x% — 2520x2 + 252x — 8

I1. DEVELOPMENT OF TWO-STEP METHOD WITH x 1 AS THE OFF-STEP POINT
3

To achieve this, the analytic solution of (1) is approximated by the trial solution of the form
r+s-1

FE = Y G~y ©

j=0

where x € [a, b], and s are the number of collocation and interpolation points respectively. The function ¢;(x)

is the j™ degree orthogonal polynomial valid in the range of integration of [a, b]. The third derivative of (9) is
given by

r+s—1

7@ = ) 4] () = fx7.5,5" (10)

Jj=0

The system of equations gotten from above will be solved by Gaussian Elimination Method. In deriving this
method, set s = 3 and r = 4 in (9) and (10) to give two equations each of degree six as follows.
6

> @) = 569 = y@ (11)
j=0
6
> @)@ = f5,5.5" (12
j=0
Interpolate (11) at x = xp,45,S = O,% ,1; and collocate (12) at x = x5, S = 0,%, 1, 2; to get the system of
equations:
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1 -5 25 -129 681  —3693 19825 1, Yn
L 139 1648 6647 20159 70942 o Ynsk
9 27 27 20 17 a, Yn+1
1 -2 3 —4 5 -6 7 a|=| P (13)
0 0 0 210 —4704 65520  —730080(,| " |p3f
0 0 0 210 —3696 40040  —344933|| . n+3
0 0 0 210 -1680 7560 25200 ||o| |hfana
o 0 o0 210 1344 5040 14400 L R3F,,,
System (1) is solved to obtain the values of the unknown parameters a;, j = 0(1)6 as follows:
17 21 41 205 697 822
G ="V = 3 Vi V120 " Taaan VI 5066 ik T agy e 35488f"+2
28 33 43 75 157 80 .
G =159 " 107t Y307 " 17288 /0t 2385 Snet YEgg M e 12571]("+2
3 91 3 23 . 21 101
a, EYn_%yn+%+%yn+1+Wh fn—mf 1+mh fre1 + 8019fn+2
L 4 17
=h (2079f ﬁf 2310f"+1 27679f"+2) (14
4( 5 1
@ =h (133056f” 24640 fn% B 14784f"+1 11723f"+2>
9
as = b (72072f"_57200fn+— 364409f"+1 225225f"+2>
1
@6 = h* (137280 Jn = 328800 fn+— 137280]("+1 686400 f"”)
Substituting (14) in (11) yields a continuous implicit two-step method in the form
1 2 (15)
T = ) @Gy + 0,1+ 0 D By + B, 0
j=0 j=0
Remark: It is to be noted here and elsewhere that y, = y(x;) for various values of k
From (15), by letting t = %R e parameters a 's and B 's are given by
ap(t) = 3t2+2t
ai1(t) = —(2t2+2t)
3 2 2
3,5
al(t)= Et +zt+1
t® > tt t3
ho(8) = h3<%_ﬁo_ﬁ 1060994104080050020
N 229 2 47 - 1 )
6480 3240 ' 509507941252785020
(9t t° 9t* 1 161t% 4t
ﬂ%(t)_ h <M+53059255636142904_%+70038217430708624Jr 900 ' 45
14637028087683264
140 )
S(t® > t* t® 56t* 31t t3
A= -h <%+E_1_6_Z_W_%+20415647391654448>
L[t t° t* 1
h="h <M+ﬁ+ﬁ_94750531357737664_
64t? t 1
15829 648 634897349135472640)
(16)
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By evaluating (15) at x,,,,, the main method is obtained as:
h3

Ytz = V0 — Wns1 + ——— ( 160f, + 23014f 1+ 49410f,,, + 176fn+2> (16)
12960 n+z
Differentiating (15) gives the continuous coefficients:

. 6t+2
ag(t) =
(9t +%)
ai(t) = ————==
3 h
-
a(t) = "
5 4 3 2
ﬁé(t)=—h2 3i_t__t_ t 229t+ 47 17)
40 24 35366471369916676 3240 3240

, (27 4 9t3 t? 161t 4

31@ =h (200 10611851127228580 _ 20 | 2334607247992876 © 450 E)
) 3t t* 2 t? 112t 31

pi(t) = —h? (40 T2 _Z_f_m_%)

N = B2 t5 t‘* t3 t? 131t 1
p(0) = 200 30 31583510452579220 16200 648
The second derlvatlves of continuous function (15) yield continuous coefficients:
6
ag(t) =17
(Zé’(t) = ?
n 3
a; () = nz
1Y = —h e t2 t 1
o) = 8 6 * 17683235680008338 850749 (18)

"oy = b 4 N t3 27¢? N t N 161
‘8%( )= 40  2652962781807145 20  11673036239951438 450

feey = h3t4+t3 3t2 112
()= 8 3 4 405

3tt 3 ¢t? t 131
2(t) =hl |+ —+ —

40 6 10 15791755226289610 16200

The additional methods to be coupled with the main method (17) are obtained by evaluating the first and second
derivatives of (15) at
xn,xn%, Xn+1r Xneo 10 gEL

WY+ 40 = 291+ 37n1 = 1 (G5 o+ oas st + 550 Foes — o fo2) (20)
Y, 34 20 =392 = 30 = 1 (o fa = st~ s ot F e fosz) (@D
Wi = 2+ 2= S = B (s ot e fra ¥ o fo g foz) @)
Wiz =8+ 21 = S s = 1 (G fo 4 2 f it + o fron + o frsz)  (@9)
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571

1 91 49 1
hz)’n—63’n+9}’n = 3Yn41 = h3< gfn—ﬁfn%—ﬂfnn +mfn+2> (24)
" 91 49
h2y s = 690 + 9%, 0 = 3yun = 1 (s o = 1 f st = s fons + s fanz) (@)
1 161
W23 = 6+ 9,1 = 3nis = B (— T fo +aea 1 + 1 frs — Teamgfure)  (26)
179 2121
hz.Vn+2 - 6Yn + 9_’yn 3.’Yn+1 = h3 (810fn 1goofn+§ + 16ngn+1 + 1349fn+2) (27)
Equations (17) and (20) — (27) are solved using Shampine and Watts (1969)
block formula defined as
AymthF(ym)+Eyn+thn (28)
A = (a;;),B = (by;), column vectors E = (e, ...e;)",D = (d; ...d,)",
m = (yn+1 ---yn+r)T and f(ym) = (fn+1' ---'fn+r)T
This leads to the matrices:
r 8 61 11
45 16 810
83 11 -1
9 -5 1 0 0 0 0 0 O 1000 3240 8100
9 1 23 —-11 11
"5 z 0000000 615 2430 48600 > 00
31 4 31 -1 4 00
"z Tz 0100000 45 810 648 _2238
A=l 5 po| 79 979 2174 | o
_E_50010000’_60010802700'_600'
27 11 -571 -9 1
— —— 0 0 01 0 0 O 6 0 0
2 2 1800 3240 4050 6 0 0
9 -3 0000100 —49 -13 24 e o0 o
9 -3 0000010 450 405 16200
L 9 -3 0 0 0 0 0 0 1 161 112 —-131
450 405 1620
—51 2121 450
11800 1609 1349
_( 1 1 13 —47 13 —19 91 —229179)T
B 8216297203240270 810 3240 3240 810
Substituting A, B, D and E into equation (28) yields the following explicit schemes:
ot ,+h2 - 61h3 s 73h3 17h3 .\ 3 (29)
Yk T Yot 30 T Te 0 F Taeen /e ¥ 35200 el T 58320 7+t t 35450 /742
I 9K3 h3 (30)
Yn+1 = Yn +hYn +—= Yn +_fn 30 f 240fn+1
L, R 18R 1707h3 h3 (19)
Yn+2 = Yn + 2ynh + 2Ry + — fn 25 fn+% 445 —ac o T ?fn+2
g R 31T 23R 7h? 13h? (32)
Vsl S It 30 gt 500 Sk T 2307+ T 26007
, . 11h? _ 9hr? h? h? (33)
Yne1 =YntVn + 120 fn +Efn+1 +%fn+1 _@fnu
| Volume 4 | Issue 5| WWW.1jmcer.com | 70|



Hybrid Scheme with Constructed Orthogonal Polynomial...

., 4h* 18h? 14h? 2h? (34)
Yniz = Yo+ 2hyn + == fo t fn% + g far 5 fure
0o 1R SR 1th, (35)
yn+l_yn 648f 24f é 648fn+1 648fn+2
27h (36)
yn+1 _Yn +_fn f +%+ﬁfn+1 120fn+2
n " h 37
Yn+2 = Yn +§fn+?fn+1+§fn+2 ( )
IV.  ANALYSIS OF THE NEW METHODS
The main methods derived are discrete schemes belonging to the class of LMMs of the form:
k k
Z AjYn+j = h? Z ﬁjfn+j (38)
j=0 j=0

Following Futunla (1988) and Lambert (1973), we define the Local Truncation Error (LTE) associated with (38)
by difference operator;
k

L)k = ) ey e+ ) = 36, e + )] (39)
j=0
where y(x) is an arbitrary function, continuously differentiable on [a, b].
Expanding (38) in Taylor's Series about the point x, we obtain the expression

Lly(x):h] = c,y(x) + c1hy'(x) + = cpy3hPH2yP 3 (x) (40)
where the ¢,, ¢y, €5 ... ¢p ... ¢, 43 are obtained
k
Co = z a; (41)
‘=0
k
= Z ja; (42)
j=1
k
1
Ez jia; (43)
j=

1 k k (44)
co==|> jia—al@-1D@-2)a-3) ) f"
q: (& —
Jj=1 j=1
In the sense of Lambert (1973), equation (38) is of order p if ¢, = ¢; = ¢, = ¢; = "¢, = Cps1 = Cpy2 = 0 and

cp+3 # 0. The ¢,43 # 0 is called the error constant and c,, .3 h?*3yP*3(x,,) is the Principal Local truncation

error at the point x,,. The equation (17) have order p = 4 and error constants C,,; = %6564.

Zero stability : The LMM (38) is said to be Zero-stable if no root of the first characteristic polynomial p(R)
has modulus greater than one and if and only if every root of modulus one has multiplicity not greater than the
order of the differential equation.

To analyze the Zero-stability of the method, we present equations (29) -(37).in the block form

AOYm = hBF (yy,) + A'y,hDf,
where h is a fixed mesh size within a block. In line with these, equations (29) - (37) give
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100

A=]0 1 ol

0 0 1

0 0 1

A =0 o 1]

0 0 1
73/32400 —17/58320 1/36450
B=| 9/80 1/240 0 ]
18/25  1707/445  1/75

0 0 1/20 ||fus
0 0 1/5 £

0 0 61/14ssollfn_2
D =

The first characteristic polynomial of the block hybrid method is given by
p(R) = det(RA® — A") (45)
Substituting A° and A’ in equation (44) and solving for R, the values of R are obtained as 0 and 1. According to
Fatunla (1988,1991), the block method equations (29)-(37) are zero-stable, since from (45), p(R) = 0, satisfy
|R;| < 1,j = 1 and for those roots with |R;| = 1, the multiplicity does not exceed three.
1.0.2 Consistency
The LMM (1) is said to be consistent if it has order p > 1 and the first and second characteristic polynomials
which are defined respectively, as
k

p(z) = Z a;z’/ (46)

j=0

Z?:o a; =0
(47)

where z is the principal root, satisfy the following conditions:
k

Z o =0 (48)

j=0

p(1)=p'(1) =0 (49)
and

p'"(1) =3'a(1) (50)

(Henrichi, 1962)
The scheme (17) is of order p = 4 > 1 and have been investigated to satisfy conditions (1)-(I11) Hence, the
scheme is consistent.

Convergence : By the theorem of Dahlguist, the necessary and sufficient condition for an LMM to be
convergent, is that, it is consistent and zero-stable. The methods satisfy the two conditions stated in definition

above and hence the method is convergent.

Region of Absolute Stability (RAS)

For the two-step method with Off-step Point § we have
3

(—160fn +23014f 1 +49410f,; + 176fn+2)
3
12960(z% + 9z — 5)

Yniz = 5Vn = W41 = 12960

h(z) = i
2301473 + 49410z + 17622 — 160
12960ei29 4 9¢i¢ — 5

AO) =——— e =8
23014e'3° + 49410e% + 176e26 — 160
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The RAS is shown in the figure below

Figure 1: Region of Absolute Stability for Two-step with Off-step Point%

V. APPLICATION OF THE METHODS
Three problems will be considered in this section.

Problem 1
Consider the constant-coefficient non-homogeneous problem
y"+y"+3y' =5y=2+6x—-5x2,0<x<1
y(0) =-1,y'(0) = 1,y"(0) = -3

sourced from Awoyemi et al (2014) and whose exact solution is y(x) = x% — e* + e*sin 2x.

This was solved using step length h = 0.1.
Problem 2
Here, the constant coefficient homogeneous problem sourced from Anake et al (2013):
y'+y =0
y(0)=0,y"(0) = 1,y"(0) =2
whose analytic solution is y(x) = 2(1 — cos x) + sinx
was solved with step size h = 0.1.
Problem 3
The stiff problem
¥y +100y" +y =102e* +e7*
y(0) = 2,y'(0) = —99,y"(0) = 1001
whose true solution is y(x) = e* + e~19%% will be solved over step size h = 0.00001.

VI. TABLES OF RESULTS

Table 1; Results for Problem 1

| Volume 4 | Issue 5|

X Exact solution Two-steps with v = %
0.1 —0.915407473756115 —0.915407472777346
0.2 —0.862573985499430 —0.862573921968956
0.3 —0.841561375114166 —0.841561261760400
0.4 —0.850966529765556 —0.850966621357168
0.5 —0.888343319155557 —0.888344202788101
0.6 —0.950604904717256 —0.950607522086856
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0.7 —1.034392853933000 —1.034398467952800
0.8 —1.136403556878910 —1.136413676460480
0.9 —1.253666211231610 —1.253682488273390
1.0 —1.383769999219790 —1.383794111055600
Table 2: Results for Problem 2
X Exact solution Two-steps with
o= 1
3

0.1 0.109825086090778 0.109825086087205

0.2 0.238536175112581 0.238536175212721

0.3 0.384847228410130 0.384847228898569

0.4 0.547296354302880 0.547296355663045

0.5 0.724260414823453 0.724260417755140

0.6 0.913971243575675 0.913971249008162

0.7 1.114533312668710 1.114533321769150

0.8 1.323942672205190 1.323942686381960

0.9 1.540106973086150 1.540106993987070

1.0 1.760866373071620 1.760866402576810

Table 3: Results for Problem 3

X Exact solution Two-steps with v = §
0.00001 1.990149838749340 1.990104988375080
0.00002 1.980398693308080 1.980219887332010
0.00003 1.970745578553010 1.970344598359350
0.00004 1.961189519162990 1.960479023925900
0.00005 1.951729549521550 1.950623067470910
0.00006 1.942364713620260 1.940776633394440
0.00007 1.933094064963130 1.930939627047790

4  Tables of Errors
Table 4: Error of the Methods for Problem 1

Two-steps with v = %

ERROR IN

AWOYEMI

0.1 9.78769 x 10710 6.408641 x 1077

0.2 6.3530474 x 1078 1.51133 x 107°
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0.3 1.13353766 x 1078 6.364443 x 107°

0.4 9.1591612 x 1078 1.675667 x 107*

0.5 8.83632544 x 1078 3.507709 x 10~*

0.6 2.6173696 x 107° 6.410875 x 10™*

0.7 5.6140198 x 10~° 1.071642 x 1073

0.8 1.011958157 x 10~* 1.682213 x 1073

0.9 1.627704178 x 10~* 2.520603 x 1073

1.0 2.411183581 x 10~* 3.644014 x 1073

Table 5: Error of the Methods for Problem 2

x | Two-steps with v = % ERROR IN Anake
(2013)
0.1 3.573 x 10712 1.6088 x 10~°
0.2 1.0014 x 10710 1.0387 x 1078
0.3 4.88439 x 10710 2.9572 x 1078
0.4 1.360165 x 10~ 2.3147 x 1077
0.5 2.931687 x 10~° 4.542 x 1077
0.6 5.432487 x 107° 1.4746 x 1076
0.7 9.10044X10° 2.8734X106
0.8 1.417677 x 1078 4.6826 x 107°
0.9 2.090092 x 10~% 6.9217 x 10~6
1.0 2.950519 x 107° 9.5974 x 10~°

Table 6: Error of the Methods for Problem 3

X Two-steps with v = §

0.00001 4.485037426 x 107*

0.00002 1.7880597607 x 1073

0.00003 4.0098019366 x 1073

0.00004 7.1049523709 x 1073

0.00005 1.10648205064 x 1072

0.00006 1.58808022582 x 1072

0.00007 2.15443791534 x 1072
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VII. CONCLUSION

Continuous hybrid scheme with off point v = % was used with constructed orthogonal polynomials as basis

function in collocation and interpolation technique. The method was analyzed, and shown to be consistent and
zero stable, and hence convergent. Three selected problems have been considered to test the effectiveness and
accuracy of the method. From our table of results, it is clear that the method is accurate and effective since the
approximation closely estimate the analytic solution.
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