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ABSTRACT: In this paper work, the Construction of Linear Multistep Method of Second Derivative Block
Hybrid for the Solution of Stiff System of Ordinary Differential Equations of general first order initial value
problems is studied. In the derivation of the multistep collocation approach using the matrix inversion method of
Onumanyi (1994) and Sirisena (1997), Power series is adopted as basis function to obtain the main discrete and
continuous scheme through collocation and interpolations approach. The second derivatives linear multi-step
block Hybrid method which incorporated with two off grid points for step number k = 2 through multi-step
collocation of the new method is consistent, convergent and zero stable. The efficiency of the new method was
tested on some stiff system of equations and found to give better approximation than the existing method.

KEYWORDS: Linear Multi-step method, Hybrid block, Stiff ODEs, Interpolation, implicit, power series,
matrix inversion and Collocation.

l. INTRODUCTION
We consider the numerical solution of first and second order differential equation for the initial value problems
of the form:

yi=f(xy), y(@ =y, (1.1)
©  "Qafrhn (1.2)

Where f is continuous and satisfies Lipchitz’s condition that guarantees the uniqueness and existence of a
solution. General linear methods emerged because of the desire to obtain a wider generalization of a large
family of traditional numerical methods for ordinary differential equations were first introduced by Butcher
(1966), as a unifying theory for studying stability, consistency and convergence for a wide variety of traditional
methods. The transformation of k-step multi-step method continue form and evaluation at various mesh point to
obtain discrete schemes. The drives discrete schemes applied simultaneously as block for moving integration
process forward with k-step at a time. Donald, Yusuf, Pius, and Paul (2009).In this paper, we developed a two-
step second derivative hybrid block method for direct solution of seconds Order Ordinary differential equations,
which is implemented in block method. The method developed evaluates less function per step and
circumventing the Dahlquist barrier’s by introducing a hybrid points. The paper is organised as follows: In
section 2, we discuss the methods and the materials for the development of the method. Section 3 considers
analysis of the basis properties of the method, which include convergence and stability region, numerical
experiments where the efficiency of the derived method is tested on some stiff numerical examples and
discussion of results. Raymond, Skwame and Kyagya (2018). And the fourth section, some numerical problems
were solved and the performance of the developed method was compared with those of the existing methods,
Donald, Skwame, Dedan (2018), finally, our conclusion was drawn in section five.

1. DERIVATION OF THE METHOD
We consider a power series approximate solution of the form
+ al
=" 3 peal, 1)
i=0 ¢ *
Gives the following nonlinear equations which can be written in matrix form as the approximate solution to
(1.2) for xi [xn, X where N =0,1, 2,3 N-1 a'sare the real coefficients to be determined, V is the

number of collocation points, m is the number of interpolation points and h= X, = X.1 is a constant step size

n+1
of the partition of interval [a, b]which is givenby@ = X <X <3 <X, = b.
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By modification of the matrix inversion approach (1.1) of Sirisena (1997), for second derivative, a k-step
multistep collocation method with m collocation points by differentiating (1.2) once and twice yields becomes:

. ° -1
y() =2Vt 8 () 22)
i=1 h c h -

+mM-1i( - ;A ﬁi_z . -
,M:2v -1 (i - Daj ax- xn¢ " = gix vy (2.3)
KR ) h2 2 h ¢ £

¢

Where v and m are the numbers of collocation and interpolation points respectively, aj sare parameters to be
determined. We consider a sequence of points { X, } in the interval | = [ab] defined by @ =Xy <X <...<X, = b,

suchthat | =X, - X, i=012,..N- 1.
We now consider the derivation of the multistep collocation method for constant step size h defined for the step
X0 Xed

m \' \'
y(9)= _aoaj(X)yn+j +h_aobj (0 fne j +h2 a9 ()9n+j
j= j= j=

(2.4)
Such thatit satisfies the conditions
YO+ )= Yt jo 11 (0.2,2,...m) (2.5)
y(X,.,)= fraejo 11 (01,2,...v) (2.6)

Where m denotes the number of interpolation points ;1 i=012..m and v denotes the number of

collocation points;(j, f( Xy Xs1), j=0,1,2,..v.
The points x; are chosen from the step X, ; as well as one off grid point from (2.4) the coefficient
polynomials are of the form

m I .
aj(x) = jioaj IR I (0,1,2,...m) 2.7

r- I
hbj(09=h""8 B, j41x il (012.m+v-1)
)=0 | 28)
5 s+r-1 I
h gj(x):h _aogj j+LX 1 (01,2,...m+v-1) (2.9)
J:
To determine &;(x), b;(x) and g;(x) , Sirisena (1997) arrived at a matrix of the form

DC=1 (2.10)
Where we identity matrix of dimension (m + v) x (m + v) while D and C are matrices defined as

1 xn x4 x3 S xy+m-1

2 3 v+m- 1
1 n XA it o X
1 . 2 3 v+m-1
1 Xpem-1 X h+m-1 )i” el Xn+_Ln- 1
0 1 2x, 3x(\J/+m- 1 /+m- LX(\J/+m— 2

- - ¢ -
D=lo 1 2x . 4 3xXvrm- 1 %Hm- LxvEm- 2

2 6% v+ me 2+ m- 1RV 3

0 0 0 g g
. 2\. :
0 0 2 6X éé/+ m- 2_%” m- v+ 3
(2.11)
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where XO = Xnv X:L = Xn+1

hb,, . hb,  hgy e hzgr_l,lg

h,, . hb., hg, . . h’g, ., §
u
u
U
u (212
u
u
u
u
u
u
u
u

hbO,s+r . hbr-l,s+r h2g0,5+r . " hz-gr—l,sﬂ []

From (2.10), we have that C = D" *, where the columns of C give the continuous coefficients
a, (%), bj (x) and 9, (X) of the continuous schemes

SPECIFICATION OF THE METHOD

The new method constructed with continues coefficients based on multistep collocation (MC). These
coefficients are obtained as polynomials in terms of columns of an associated inverse matrix and are given
implicitly for multi-step hybrid block method of second derivative. The values are then substituted into equation
(2) to give the implicit continuous hybrid method of the form

vV 2
J ¢ k u
PO= & @09+ j*1 & b (9Yns j v, (e 6D
j=0 =0
+h2§ a gJ (X)yn+1 tov, (X)Yn+v| E
ej _O E
with first and second derivative given by
18V 8¢ g e o 3.2
p(X)—fé a a, (><)yn+JLI ! b W+ by, [ ey 3+h 68 G0N, jta. (X)yn+v|3
g = B @J g é&=0 g
P (X)—hfzé fi aj(X)yn+Ju+é a b iOWn oy +by. (X)Yn+v|u+e a g, (X)yn+j+gv (><)yn+vIu
gl =0 g é-= ua él= a
Let express aj( X) and b. (x) as continuous functions of t by letting
= X" %nv and ar_1
B dx h

To derive this method, two off step points is introduced. This off step points is carefully selected to guarantee

zero stability condition. For this method, the off step points is .% %u Using (3.1) with m=landv =5, we have

I y

a polynomial of degree 2v+u - 1as follows

10 ax- X, 01

y(x) = aa aeio
j=0 h
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with first and second derivative given by

X gl-1
yi(¥) = a Jaj AL (3.5)
J_ +
yii(x) = a i(j- Da, aeT”o (3.6)
g -—
Substltutlng (3.6) and (3 5) into (1.1) gives
d-1 10 |%i 1a| d-2
Jy"éaXs f@(,ly,ly"’— Oia &X- Xn$ X-xnf 7 j=1..m (3.7)
&h Fn |2hz§ehE

Now interpolating (3.4) at X mu=0 and collocating (3.7) at Xy, V=

1.3 .0

0,-,1,—, ﬂ leads to the system
2 2y

of equations written in the matrix form AX =U as

X X s X X X X X X
2x, 3% 43 5x¢ 6 7x¢ 8x! 98 10xn
heax, abnex? adnex? sdneg) enegl 7neg® alneg) otneg) 10(inex)s
2h+2x,  h+x, ) 4h+x)  Shtx)t  6(h+x)®  T(h+x)®  gh+x)  9(h+x) 10(h+><ﬂ)9 0
she2x, A3hex ) A3hex ) SShex) 6Ghex )P TGhex ) aShex) o3hex ) 1003 h+xn)9°
4h+2x, 32h+x, Y  42h+x,)  42h+x)*  6(2h+x,)°  7(2h+x,)®  82h+x,)  9(2h+x,) 10(2h+xn) 9
2 6X, 12x 203 304 4252 56X 72! 908 8
1 2 1 3 1 3 1 4 1 5 1 6 1 89

2 $h+6x,  12A5h+x)* 20(zh+x)* 30(5h+x) 42A5h+x)" 56(zh+x) 725h+x) 90(§h+xn)6
2 6h+6x,  12(h+x,)*> 20(h+x,)* 30(h+x,)® 42(h+x,)* 56(h+x,)> 72(h+x,)° 90(h+xn) o

2 9h+6x, 12(%h+xn)2 20(%h+xn)3 30(%h+><n)3 42(%h+xn)4 56(%h+xn)5 72(%h+xn)6 902 h+xn)8
2 12h+6x, 12(2h+x,)> 20(2h+x,)° 30(2h+x,)° 42(2h+x,)* 56(2h+x,)° 72(2h+x,)° 90(2h+xn)8°

O: O: OOt

L B8 8BS BB BBS BB BB B B
O O O ©O O Fr Pk kX

Employing the Gaussian elimination method on equation (3.6) gives the coefficient a; 3 :0§§_§'10§ . The values
g v

are then substituted into equation (3.2) and (3.3) to give the implicit continuous hybrid method of the form;

e o

Pe= aaiyn+i th§ a0 fnei+ G fneil+h?l &g On+i+ AGOn+l
i=0 §=1 3 i=0 u 3:1 3 =0 u (3.8)
§ 22 i 22 i '
Differentiating equation (3.8) once gives;
2, 2
péXB—h adiyn+i+e abifn+i+ abifn+ifthe 4G On+i+ agidn+i
=0 §=13 =0 b =13 =0
§ 22 bog 2'2 § (3.9)
where
a, =1
1
By~ 36080 thf, (50400 # — 553280 £ + 2601900 / — 6832800 £ + 10925250 £ — 10818612 *

+ 6348825 £ — 1833300 £ + 136080)
B =505 Phf | (5040 —51520£ +220815 £ — 512280 £ + 690060 £ — 532728 # +211680 ¢
7 nt

- 30240)

Bi=375 z3hf (560z6—504015+18360t4—34440z3+34839z2—17955z+3780)
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2
Bs =2s;3s Pitg (10087 —9520 £ +37485F — 79740 £ +99120 £ — 72324 £ + 28980 1 — 5040)
2 n+7

B.= - T3e080 — 7 hy (50400 ! — 454720 £ + 1714860 £ — 3509280 £ + 4218690 £ — 2993508 7

+ 1172745 ¢ — 200340)

£t g (2016 £ —22400¢" + 107100 £ — 288000 £ + 477330 £ — 501480 £ + 329175

Y~ 45360
— 126000 ¢ + 22680)
2
Y1 =555 g | (10081 —10640 £ +47565F — 116820 £ + 170520 £ — 148428 £ + 71820 ¢
5 L
—15120)

1
NW=—=Fnrg (164 —64£+942—-60t+15) (t—2)°
10 n+1
2

Y5 =W?h2 5 (10087 —9520 £ +37485 2 — 79740 £ + 99120 £ — 72324 £ +28980 1 — 5040)
) n+7
= 75360 th (2016t7—17920z6+6678015—135360f4+161490:3—113904z2+44415z
—7560)
(3.10)

Evaluating the continuous schemes y(x) in (3.9) at the grid points

X=X X = X0, X = Xy XZ X0, X = X

19
+1
nZ

To obtain the following four discrete schemes which can solve simultaneously for accurate treatment of system
of first and second order differential equation, if desire

1 1 2
+ = N(153955f, +1429936f , +711936f . +613456f ., +59681f )+——h
yn+2 " gr00120 " s m " e dace
(26051gy - 2496569, +183708, g +497209g+§ +2237g, )
2 2
1 .2
h(24463f, +52928f , +44928f . +12608f ., +1153f —_h
Y1 = Yn* 5136080 A ml i n+3 n2)* 45350
(4219 - 3O4Ogn+l - 4536gn+1- 9929g+§ - 439n+2)
2 2
3 1 .2
=y +——— (2167 f, +4912f , +6712f_ . +3792f ,+137f . )+——h
yn+% Yn* 35840 2107 n n+% n+l1 n+g n+2)* 35840
1139y - 7449 | - 7560, ;- 4889g+§ -15g,.,.,)
2 2
1 1 .2
Ynep = Yn + oo (16011 +4096 fn% +56167,9 +40961 5 +1601, H)+-oh
20gn- 128g , +128g 4 - 29
(299n-1289 4 9943 In+2)
2 2
(3.11)
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IV.  ANALYSIS OF THE METHOD
4.1 Order and error constant of our new method :The order and error constants will be defined following the
method of Chollom et.al (2003) however, with some modification to accommodate general higher order
ordinary differential equations and offstep points.

The order and error constants of the new method is obtained using

~ k Lo . Ky s Ky 0 %
’?Ey%xg ; hg: .aoaj yj§(+ jhg-h _aO?Jj y'(X+ jh)g- h2 .-aO?j y (X+ jhE (4.1.1)
1= - F i 1= i

The equation can be written in Taylor series expansion about the point X to obtain the expression

ICHIE o y(X)+C1h Y'(X)+C2 h? v+ ¢ Cp+1hp+1 y(p+1) .. (4.12)

where the constant coefficients Cq, q=0,1, 2,. .. are given as follows

. | 888 |
| ¢ o 888 Q zT T I 88871)

v E Er

! ¢I 88871 A1 ¢ 1 8887°Q T ),q23,...
(4.1.3)
Hence, Equation (4.1.3) is of order p if,
Iy():h§=0MP*2},Co=C1=Cp= . . . =Cp41=0, Cp+2.0
a 8
(4.1.4)

The truncation error is then given as Cp+2=11in whichp=9, comparing the coefficient of h gives

BN

T
_@& 551 1 1 1 g
Cp=C1=C2=Cg=...=Cyp=0and (11 66437781504 00 ' 1005903360 0 * 883097600 502951690 [

4.2 Consistency of the Method : The hybrid block method is said to be consistent if it has an order more than
or equal to one i.e. P 2 1. Therefore, the new method is consistent Dahlquist (1956).

4.3 Zero Stability of the Method : The hybrid method is said to be zero stable if the first characteristic

polynomial p(r) having roots such that|rz| ¢1 and if |rz| =1, then the multiplicity of I', must not
be greater than two, Dahlquist(1956) and Butcher( 2009) expressed in the form

al 0 0 0g & 0 O
% 10 09 % 0 0 1¢
(0] 3
= g o= -1
p(z)a%010§a%oo.z(z)
E% 00 1+é% 00
p(z) =z%(z-1)=0,2=0,0,01

Hence, our method is zero-stable.

4.4 Convergence of the Method : Definition (4.1) The convergence of the continuous implicit hybrid the
method is considered in the light of the basic properties discussed earlier in conjunction with the fundamental
theorem of Dahiquist, Henrici (1962) for linear multistep method.

4.5 Region of Absolute Stability of the Method : By applying boundary locus condition from equation (28)
RAS Aw- Ep- ;- dh- bhw- h2¢- h2 pw
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26051
1539551 000 ———
. 000 o 2903040
1000 0001 2 24463 000 —22L
L_|otoo|  _Jooot| fooo 136080 | ._ 45360
“looto[ ™ Jooo1 [ 3 |97 6501 339
0005 000 000 35800
0001 0001 35840
0002 1601 29
RLCAE 000 ——
000 <505 2835
89371 103 38341 59681 31207 81 1243 2237
544320 1260 544320 8709120 T362880 1280 72576 2903040
3308 104 788 1153 38 1 62 43
b 8505 315 8505 136080 " 567 10 2835 45360
921 81 711 411 |P7 279 81 183 9
2240 140 2240 35840 4480 1280 4480 7168
4096 208 4096 1601 128 0 128 29
8505 315 8505 8505 2835 2835 2835

Substituting this equation into method 3.3.2 yields the following stability polynomial

& 1 3, 1 ,4§8,4 17113 3 103 4goc & 230633 3 8509 484

T 2304 806400 © o 604800 483840 ° o 453600 725760 <
LB, 25279 3 1229 480 4 2884 3
11200 s18a C 2835

This is obtained with Maple 18 software, hence using Mat lab 10 software we obtained the region of absolute
stability as shown in figure 1 below.

0.4 T T T T

03 B

0.2+ B

0.1+ B

Im(z)
=]
T
I

-0.1- B

-0.2- B

0.3+ B

0.4 I 1 1 I ! 1 1 I
-0.1 0 01 02 0.3 0.4 0.5 0.6 0.7 0.8

Re(z)
Figure 1: Region of Absolute Stability for K =2 with 2 off grid

4.6 Numerical Experiment:
Example 1: Consider the mildly stiffly differential equation

y; =-8y, +7y,;y,(0) =1
y; =42y, -43y,;y,(0) =8,h=0.1

with exact solution

| Volume 4 | Issue 5| www.ijmcer.com | 51]



Linear Multistep Method of Second Derivativie B ¢ k

Hy bri d..

yl(x) =2e*-¢€°
Y, (X) =2e* - 6e >~

0 X

Source: (Donald, J. Z., Skwame, Y. and Dedan, G. (2018): DSD)

NB

2S520GP: Two step with Two Off-grid Point
DSD: Donald, J. Z., Skwame, Y. and Dedan, G. (2018).

Example 2: Consider the mildly stiffly differential equation
Y, =¥, 95,y (0)=1
Y, =-Y1-97y,;,(0) =8, h=0.1

with exact solution

yl(X) ==

95 -2x _ 48 -96x

47 47
48 -96x_ 1 -2x
X)=—e€ -—e
Y200 =57 47

Table 1: The Exact Solution and the Computed Result for Experiment 1 of 2S20GP

Exact
Solution «

Computed
Result «

Absolute
Error «

Exact
Solution «

Computed
Result «

Absolute
Error «

0.1
0.2
0.3
0.4
05
0.6
0.7
0.8
0.9
1.0

1.8029368819
1.6374161060
1.4816361350
1.3406400900
1.2130613190
1.0976232720
0.9931706096
0.8986579282
0.8131393194
0.7357588824

1.8028987080
1.6371934530
1.4816346250
1.3406400200
1.2130613200
1.0976232720
0.9931706079
0.8986579284
0.8131393198
0.7357588821

0.0000381739
0.0002226530
0.0000015100
0.0000000700
0.0000000010
0.0000000000
0.0000000017
0.0000000002
0.0000000004
0.0000000003

1.7692471540
1.6371891060
1.4816346060
1.3406400800
1.2130613190
1.0976232720
0.9931706076
0.8986579284
0.8131393194
0.7357588824

1.8503316120
1.6390698190
1.4816473380
1.3406405200
1.2130613220
1.0976232720
0.9931706075
0.8986579267
0.8131393193
0.7357588811

0.0810844580
0.0018807130
0.0000127320
0.0000004400
0.0000000030
0.0000000000
0.0000000001
0.0000000017
0.0000000001
0.0000000013

Y Axis

15

0.5

E}( Ax% !

==@==Exact Solution (Y1)
e=g==Computed Result (Y1
==0== Absolute Error (Y1)
Exact Solution (Y2)
e=g==Computed Result (Y2
Absolute Error (Y2)
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Example 1 Example 2 DSD (2018)
@ Absolute Absolute Absolute Absolute ébsolute Absolute
rror « Error
Error « Error « Error « Error « ]
0.1 7.73E-04 1.95E-02 7.73 E-04 1.95 E-02 6.31E-01 6.07E-01
0.2 7.74E-03 5.72E-03 7.74 E-04 5.71 E-03 3.72E-01 3.90E-01
0.3 7.29E-07 1.18E-02 7.29 E-07 1.18 E-03 1.75E-01 1.85E-01
0.4 5.86E-05 9.67E-03 5.86 E-07 9.67E-03 1.05E-01 1.10E-01
0.5 4.65E-08 8.00E-03 4.65 E-08 8.01 E-03 7.39E-02 7.07E-02
0.6 4.42E-08 6.41 E-03 4.42 E-08 6.+41E-03 4.43E-02 3.36E-02
0.7 1.60E-09 5.24 E-03 1.6 E-09 5.24 E-03 1.82E-02 1.99E-02
0.8 1.20E-09 4.29 E-03 1.2E-0.9 4.29 E-03 1.46E-02 1.28E-02
0.9 1.80E-09 3.51 E-03 1.8 E-09 3.51 E-03 2.80E-03 5.96E-03
1.0 2.00E-10 2.87E-03 2.0 E-09 2.878E-03 6.94E-03 3.63E-03

Figure 2: showing the performance of our methods with exact solution and absolute error of examples 1

and 2

Table 2: The Exact Solution and the Computed Result for Example 2 of 2S20GP

Exact Computed Absolute Exact Solution Computed Absolute
Solution « Result « Error « « Result « Error «
0.1 1.654812139 1.654038801 0.000773338 0.00300963809 -0.0165772959 0.019586934
0.2 1.354902216 1.347162225 0.007739991 0.00028509549 -0.0054221324 0.005707228
0.3 1.109293001 1.109293731 0.000000729 0.00020402520 -0.0116704582 0.011874483
0.5 0.743586104 0.743586058 0.000000046 0.00017563244 -0.0078271737 0.008002806
0.6 0.608796811 0.608796369 0.000000442 0.00000358383 -0.0064079429 0.006411526
0.7 0.498440671 0.498440673 0.000000001 -0.00000333119  -0.0052467435 0.005243412
0.8 0.408088706 0.408088705 0.000000001 -0.00000133167  -0.0042956672 0.004294335
0.9 0.334114774 0.334114775 0.000000001 -0.00000117702  -0.0035169976 0.003515820
1.0 0.273550040 0.273550042 0.000000002 -0.00000096178  -0.0028794741 0.002878512
2
==0==Exact Solution (Y1)
15 N~ c
==g==Computed Result (Y1)
0 \ —
= 1 ~ Absolute Error (Y1)
< — O | Exact Solution (Y2)
>0. Xact Solution
0.5 —a
0 PN ° ® ® ® ® ® ® ° @ Computed Result (Y2)
1 2 3 4 5 6 7 8 9 10 =re= Absolute Error (Y2)
-0.5 XAXS

Figure 3: showing the performance of our methods with exact solution and absolute error of experiment 2

Table 3: Comparison of new methods with that of Donald, J. Z., Skwame, Y. and Dedan, G. (2018): DSD
on examples 1 and 2.

V.

CONCLUSIONS

The numerical results obtained in table 3 for the problems solved suggest that the new proposed block hybrid
method (3.11) is suitable for stiff problems and perform competitively well with less computational effort
compared with the method of Donald et al (2018).
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